KAKATIYA UNIVERSITY U.G. Skill Enhancement Course - IV (Under CBCS) B.Sc. Final Year SEMESTER - VI (FOR ALL SCIENCE FACULTY DEPARTMENTS)

QUANTITATIVE APTITUDE TEST

Credits: 2

Theory: 2 hours/week

Marks - 40

Unit – I ARITHMETICAL ABILITY

1.1 Arithmetical Ability: Ratio & Proportion
1.2 Arithmetical Ability: Time & Work, Time & Distance
1.3 Arithmetical Ability: Simple Interest, Compound Interest
1.4 Arithmetical Ability: Stocks & Shares

Unit – II DATA INTERPRETATION

2.1 Data Interpretation: Tabulation

2.2 Data Interpretation: Bar Graphs

2.3 Data Interpretation: Pie Charts

2.4 Data Interpretation: Line Graphs

Text Book: Quantitative Aptitude by Dr. R.S.Aggarwal

KAKATIYA UNIVERSITY U.G. B.Sc. Final Year (Under CBCS) Semester – VI: Generic Elective Paper-II (FOR ALL SCIENCE FACULTY DEPARTMENTS)

WATER RESOURCES MANAGEMENT

UNIT-I

- 1. Importance of Natural Resources Different Types Resources
- 2. Significance of Water Resources and their uses
- 3. Conservation of water and recycling of the water Global distribution of water
- 4. Water shed programmes and their management
- 5. Storing the rain water in tanks and recharging ground water.

Unit-II

- 6. Rain water harvesting in rural areas (chekdam, trenches etc.,)
- 7. Over use of surface and ground water and control measures.
- 8. Aims, objectives and implementation of Mission Bhagiratha (Telangana Government Drinking water programme)
- 9. Aims, objectives and implementation of Mission Kakatiya (Telangana Government minor irrigation programme)
- 10. Issues and challenges in Water Resources Management

Plant Physiology

DSC-1F	(3hrs./week)	Theory Syllabus Cree	dits-3
		(45 h	iours)
Unit – I			
1. Water R	Relations: Importan	ce of water to plant life, physical properties of water, diffusion,	
imbibit	ion, osmosis; water	r, osmotic and pressure potentials; absorption, transport of water,	
ascent o	f sap; transpiration	; Stomatal structure and movements.	(7h)
2. Mineral	Nutrition: Essentia	al macro and micro mineral nutrients and their role; symptoms of	
mineral	deficiency.		(3h)
3. Transloo	cation of organic sub	ostances: Mechanism of phloem transport; source-sink relationships.	(2h)
Unit – II			
4. Enzyme	es: Nomenclature, c	haracteristics, mechanism and regulation of enzyme action,	
enzym	e kinetics, factors r	egulating enzyme action.	(4h)
5. Photosy	nthesis: Photosyntl	hetic pigments, absorption and action spectra; Red drop and Emer	son
enhance	ement effect; conce	ept of two photosystems; mechanism of photosynthetic electron	
transpo	rt and evolution of	oxygen; Factors effecting Photosynthesis, photophosphorylation	(4h)
6. Carbon	assimilation path	nways: C3, C4 and CAM.	(4h)
Unit – III			
7. Respirat	tion: Aerobic and A	Anaerobic; Glycolysis, Krebs cycle; electron transport system,	
mechan	ism of oxidative ph	nosphorylation, pentose phosphate pathway.	(6h)

8. Nitrogen Metabolism: Biological nitrogen fixation, nitrate reduction, ammonia assimilation, (GS-GOGAT, transamination) (4h)

9. Lipid Metabolism: Structure and function of lipids. (3h)

Unit – IV

10.	. Growth and Development: Physiological effects of phytoharmones–Auxins, gibberellins,		
	cytokinins, ABA, ethylene and Brassinosteroids	(3h)	
11.	Physiology of flowering and photoperiodism. Role of Phytochrome in flowering.	(3h)	

- 1. Hopkins, W. G. 1995. Introduction to Plant Physiology. John Wiley & Sons Inc., New York, USA
- 2. Jain, J.L., S. Jain and Nitin Jain. 2008. Fundamentals of Biochemistry. S. Chand & Company Ltd., New Delhi.
- 3. Pandey, B. P. 2007. Botany for Degree Students: Plant Physiology, Biochemistry, Biotechnology, Ecology and Utilization of Plants. S. Chand & Company Ltd., New Delhi.
- 4. Salisbury, F. B. and C. W. Ross. 1992. Plant Physiology. 4th edn. (India Edition), Wordsworth, Thomson Learning Inc., USA.
- 5. Taiz, L. and E. Zeiger. 1998. Plant Physiology (2nd Ed.). Sinauer Associates, Inc., Publishers, Massachusetts, USA.
- 6. Dutta A.C. 2016. Botany for Degree Students. Oxford University Press.

Plant Physiology Practical Syllabus

(45 hours)

1.	Determination of osmotic potential of vacuolar sap by Plasmolytic method using leaves of		
	Rheodiscolor / Tradescantia. (6h)		
2.	Determination of rate of transpiration using Cobalt chloride method	(3h)	
3.	Determination of stomatal frequency using leaf epidermal peelings / impressions	s (6h)	
4.	Determination of catalase activity using potato tubers by titration method	(6h)	
5.	Separation of chloroplast pigments using paper chromatography technique	(12h)	
6.	Estimation of protein by Biurette method	(6h)	
7.	Mineral deficiency- Detail study of Micronutrients and Macro nutrients	(3h)	
8.	Identification of C ₃ , C ₄ and CAM plants	(3h)	

Elective I

A) Tissue Culture and Biotechnology

DSE-1F	(3 hrs./week)	Theory Syllabus	Credits-3 (45 hours)
Unit – I			
1. Tissue	culture: Introduction, s	terilization procedures, explants, culture media – comp	position
and pre	eparation; Micropropag	ation.	(5h)
2. Organ d	culture: Vegetative Org	ans-Root, Shoot, Leaf culture	(6h)
Reprod	uctive Organs-Anther,	Ovary, Ovule, Embryo culture	
3. Callus	culture, Cell and Proto	plast culture	(4h)
Unit – II			
4. Somati	c hybrids and Cybrids.		(4h)
5. Applica	ations of tissue culture:	Production of pathogen free plants and somaclonal va	riants,
produc	tion of stress resistance	e plants, secondary metabolites and synthetic seeds.	(6h)
6. Product	tion of hairy roots and i	ts applications in production of secondary metabolites	. (2h)
Unit – III	[
7. Biotech	nology: Introduction, h	nistory, scope and applications.	(3h)
8. rDNA t	echnology: Basic aspe	ct of of gene cloning, Enzymes used in gene cloning –	
Restrict	tion enzymes, Ligases,	Polymerases.	(4h)
9. Gene cl	oning-Vectors – clonir	ng vehicles (Plasmid , Cosmids, Bacteriophages,	
& Phasr	nids) application of r I	DNA technology.	(5h)
Unit – IV			
10. Gene	Libraries: Genomic Lit	praries, cDNA Libraries, Polymerase chain reaction an	d its
applica	ations.		(4h)
11. Meth	od of gene transfer in p	lants (Agrobacterium and Microprojectile)	(4h)
12. Produ	ction of transgenic pla	nts, Bt –application in cotton and brinjal. Application	of

(3h)

Transgenic in crop improvement.

- 1. Balasubramanian, D., C. F. A. Bryce, K. Dharmalingam, J. Green and K. Jayaraman. 2004.
- 2. Biotechnology. Universities Press (India) Private Limited, Hyderabad.
- 3. Channarayappa. 2007. Molecular Biotechnology Principles and Practices. Universities Press
- 4. (India) Private Limited, Hyderabad.
- 5. Chawala, H. S. 2002. Introduction to Plant Biotechnology. Oxford & IBH Publishing Company,
- 6. New Delhi.
- 7. Dubey, R. C. 2001. A Textbook of Biotechnology. S. Chand & Company Ltd., New Delhi
- 8. Edmond, J. B., T. L. Senn, F. S. Adrews and R. J. Halfacre. 1977..
- Jha, T.B. and B. Ghosh. 2005. Plant Tissue Culture Basic and Applied. Universities Press (India)
- 10. Private Limited, Hyderabad..
- 11. Ramawat, K. G. 2008. Plant Biotechnology. S. Chand & Company Ltd., New Delhi.
- 12. Salisbury, F. B. and C. W. Ross. 1992. Plant Physiology. 4th edn. (India Edition), Wordsworth,
- 13. Thomson Learning Inc., USA..

Elective I

A) Tissue Culture and Biotechnology Practical Syllabus

1. Estimation of plant DNA. (Tomato)	(6h)
2. Production of synthetic seeds /Encapsulation of embryo	(3 h)
3. Preparation of plant tissue culture medium.	(6h)
4. Callus Micropropagation	(3h)
5. Demonstration of Micropropagation/ multiple shoots	(6h)
6. Anther culture	(3 h)
7. PCR –Demonstration	(3h)
8. Study of biotechnology products: Samples of antibiotics and vaccines	(6h)
9. Photographs of transgenic plants – Bt Cotton, Bt –Brinjal.	(3h)
10. Instruments used in Biotechnology lab- Autoclave, Laminar air flow, Hot air o	ven and
Incubator.	(6h)

Elective

B) Seed Technology

DS	E-1F (3 hrs./week)	Theory Syllabus	
			Credits-3 (45 hours)
Uni	it – I		
1.	Seed: Structure and type	es. Seed dormancy: causes and methods of breaking dormanc	cy. (4h)
2.	Seed storage: Long term	n and short term storage. Orthodox and recalcitrant seeds.	
	Packing of seeds – Prine	ciples, practices, bagging and labeling.	(3h)
3.	Physico and Bio-chemio	cal changes during seed storage.	(2h)
Uni	it – II		
4.	Seed viability, factors a	ffecting seed viability and genetic erosion.	(3h)
5.	Cultural practices and h	arvesting of Seed: Isolation, Sowing, Cultural practices,	
	harvesting and threshing	g of the following crops: (a) Rice, (b) Cotton, (c) Sunflower	(9h)
6.	Seed Treatment to contr	col seed borne disease –General account	(3h)
Uni	it – III		
7.	Structure of pollen and	ovule-Types of ovules, Collection and storage of pollen	(3h)
8.	Principles of hybrid see	d production-Cross pollination, Emasculation, Self pollinatio	on,
	role of pollinators and t	heir management.	(5h)
9.	Seed development in cu	ltivated plants, seed quality concept, importance of genetic	
	purity of seed. Hybrid s	eed production and Heterosis.	(4h)
Uni	it – IV		
10.	Seed production techno	logy; seed testing- Procedures of seed testing, seed testing	
	laboratories and importa	ance of seed testing.	(3h)
11.	Seed certification-Histo	ory, Seed certification agency, Indian minimum, general and	
	specific seed certification	on standard.	(3h)
12.	Seed banks- National, I	nternational and Millennium seed banks.	(3h)

- 1. Agrawal, P. K. 1993. Hand Book of Seed Technology. Dept. of Agriculture and Cooperation. National Seed Corporation Ltd., New Delhi
- 2. Balasubramanian, D., C. F. A. Bryce, K. Dharmalingam, J. Green and K. Jayaraman. 2004. Biotechnology. Universities Press (India) Private Limited, Hyderabad.
- 3. Bedell, Y. E. Seed Science and Technology. Indian Forest Species. Allied Publishers Limited, New Delhi.
- 4. Channarayappa. 2007. Molecular Biotechnology Principles and Practices. Universities Press (India) Private Limited, Hyderabad.
- 5. Chawala, H. S. 2002. Introduction to Plant Biotechnology. Oxford & IBH Publishing Company, New Delhi.
- 6. Dubey, R. C. 2001. A Textbook of Biotechnology. S. Chand & Company Ltd., New Delhi
- 7. Edmond, J. B., T. L. Senn, F. S. Adrews and R. J. Halfacre. 1977..
- 8. Hartman, H. T. and D. E. Kestler. 1976. Plant Propagation: Principles and Practices. Prentice & Hall of India, New Delhi.
- 9. Jha, T.B. and B. Ghosh. 2005. Plant Tissue Culture Basic and Applied. Universities Press (India) Private Limited, Hyderabad..
- 10. Ramawat, K. G. 2008. Plant Biotechnology. S. Chand & Company Ltd., New Delhi.
- 11. Salisbury, F. B. and C. W. Ross. 1992. Plant Physiology. 4th edn. (India Edition), Wordsworth, Thomson Learning Inc., USA..
- 12. Tiwari, G. N. and R. K. Goal. Green House Technology Fundamentals, Design, Modelling and Application. Narosa Publishing House, New Delhi.
- 13. Tunwar, N. S. and S. V. Singh. 1988. Indian Minimum Seed Certification Standards. The Central Seed Certification Board, Govt. of India, New Delhi.

Elective

B) Seed Technology Practical syllabus

(45 hours)

1.	Testing of seed viability using 2, 3, 5-triphenyl tetrazolium chloride (TTC).	(3h)	
2.	Estimation of amylase activity of germinating seeds (Qualitatively).	(3h)	
3.	Demonstration of seed dressing using fungicides to control plant diseases.	(3h)	
4.	Demonstration of seed dressing using Biofertilizers (BGA) to enrich nutrient supply.	(3h)	
5.	Emasculation, bagging of flower for hybrid seed production.	(6h)	
6.	Dissection of Dicot embryo (bean) and Monocot embryo (maize).	(6h)	
7.	Pollen viability test using Evan's blue staining. (Hibiscus).	(3h)	
8.	Harvesting and Importance of following seeds:		
	Rice,		
	Maize,		
	Cotton,		
	Groundnut and		
	Sunflower.	(6h)	
9.	Types of ovules: Orthotropous, Anatropous and Campylotropous.	(3h)	
10.	Structure of pollen grains: Hibiscus and grass.	(3h)	
11.	Study visits to research institutes, seed tests and certification laboratories and places	seed	
	banks.	(6h)	

Elective

C) Bio-Control of Plant Diseases and Pests

DSI	E-1F	(3 hrs./week)	Theory Syllabus	Credits-3 (45 hours)	
Uni	t – I				
1.	Introd	uction to various appr	oaches to the control of Pests and Diseases of Plants	(4h)	
2.	Biolog	gical Control of Funga	l Diseases	(3h)	
3.	Biolog	gical Control of Bacte	rial and Viral Diseases of Plants	(4h)	
Uni	t – II				
4.	Pheron	mones and Semi-chen	nicals	(4h)	
5.	Botan	ical Insecticides		(3h)	
6.	Plant	Plant Parasitic Nematodes: Introduction, Susceptible response of Plants to Nematodes			
	and C	ontrol of Nematodes		(4h)	
Uni	t – III				
7.	Progre	ess towards commerci	alization of Baculovirus Insecticides	(4h)	
8.	Biolog	gy of Bacteria and Fur	ngi used for control of Weeds	(4h)	
9.	Genet	ic Engineering approa	ches for Weed Resistance	(4h)	
Uni	t – IV				
10.	Integr	ated Pest managemen	tStrategies	(4h)	
11.	Insect	Growth Regulators		(3h)	
12.	Regul	atory aspects of Biolo	gical Control Agents	(4h)	

- 1) Campbell R. 1989. Biological Control of Microbial Plant Pathogens. Cambridge Univ. Press, Cambridge.
- Cook RJ & Baker KF. 1983. Nature and Practice of Biological Control of Plant Pathogens. APS, St. Paul, Minnesota.
- 3) Dhaliwal GS and Arora R.1994. Trends in Agriculture insect pest management. Common wealth Publishers, New Delhi.
- 4) Fokkemma MJ. 1986. Microbiology of the Phyllosphere. Cambridge Univ. Press, Cambridge.
- 5) Gnanamanickam SS (Eds). 2002. Biological Control of Crop Diseases. CRC Press, Florida.
- 6) Heikki MT & Hokkanen James M (Eds.). 1996. Biological Control Benefits and Risks. Cambridge Univ. Press, Cambridge.
- 7) Mukerji KG, Tewari JP, Arora DK & Saxena G. 1992. Recent Developments in Biocontrol of Plant Diseases. Aditya Books, New Delhi.
- 8) Mukherji KG and Chincholkar SB.2006. Biological control of plant diseases. Heaworth Food and Agricultural Products Press, New Delhi.
- 9) Sharma PD.1993.Environmental Biology and Toxicology. Rastogi and company

Elective

C) Bio-Control of Plant Diseases and Pests Practical Syllabus

		(45 hours)
1.	Extraction of Biopesticide from Neem/Annona.	(6h)
2.	Extraction of Biopesticide from Tagetus/Chrysanthemum.	(6h)
3.	Formulation of Biopesticide from fungal organism (Trichoderma spp.).	(6h)
4.	Formulation of Biopesticide from Bacteria (Bacillus thuringiensis/Pseudomonas	spp.)(9h)
5.	Improved technique and staining of plant tissues for detection of plant nematode	es.(6h)
6.	Identification of disease based on the histo-pathogenesis.	(6h)
7.	Formulation of viral Biopesticide (Nuclear Polyhedrosis Virus)	(6h)